NADH没有但没有延寿,还减寿!NADH适量的三大危险,你分解吗?

2023-01-01 09:48:02  阅读 61 次 评论 0 条

岁月派抗衰论争院的执笔

NAD家族的NMN和NR在股市上乘势而上。 那个“一奶同胞”伯仲NADH已经蠢蠢欲动了。 打着“NMN的第三代NAD1片”、“恢复型nad抗氧化”、“直接转化nad强力延长寿命”的旗号胡闹,妄想富豪继续向墟市要一碗汤……

正文:

NAD和NADH :有关联,但区别更大

烟酰胺腺嘌呤二核苷酸(NAD )是生物体内多种脱氢酶(/氧化酶)的辅酶,具有传递氢和电子的功能,在接收剩余物质被氧化逃逸的氢和电子后,NAD即为恢复型烟酰胺腺嘌呤二核苷酸)

图注: NAD加氢和NADH脱氢反应相互转化

NAD和NADH在细胞内各种根底生化反应中相互转化。 但一般细胞质内NAD /NADH比值约为60-700,线粒体内NAD /NADH比值维持在7-8 [ 2,3 ]。 此NAD明显多于NADH数,与才能相关联维持一般线粒体膜电位,保险一般线粒体功能和细胞能量代谢[4-6]。

图注: NAD /NADH为场糖代谢及生物氧化(@ trendsinendocrinologymetabolism,岁月派编译) ) ) ) ) ) ) ) )

NAD /NADH的生物学影响,与“绿之伟人浩克”和变身前的“香蕉”一律之间有关联,很大程度上可以区别。 最多,NAD是激活短命蛋白质Sirtuins以延迟脆弱的功能,而没有NADH。

图注: NAD和NADH的生物学影响(魏海阳,et al.) )。

其中也有NADH会引起“恢复性压力”的故事。 看到NADH名字中的“恢复型”三个字,很多人想将其认定为恢复剂。 但争议一经证实,适量的NADH加速了ROS的天生反应,加剧了其氧化[ 10,11 ],“恢复型”反而成为NADH的原罪。

注: NAD /NADH与氧化恢复及脆弱历史的关联(WEIHAI YANG,et al.) ) ) ) ) ) )。

NADH可能在浪费你Calerie的“短命药”

目前,对NAD的争论越来越明显,随着春秋的加入,某些结构内的NAD不断削减; 许多人并不降解的是,NADH在此过程中不断普及,与衰老有关[18]。

图注:人脑细胞中总NAD、NAD和NADH水平随春秋季变化[18]

NAD与NADH之间存在“这种权衡”关系:有争议让受试者补充NADH,给药8周后测定血液单核细胞内NAD和NADH含量,局发细胞内NAD水平降低,NADH水平升高,NAD /NADH比值

图注:弥补NADH 8周后血液单核细胞内NAD、NADH水和NAD /NADH的变化[19]

热量限制(CR )是目前公认的最有效的“延年益寿”方法,它通过调整Sir2升高NADH水平,提高NAD /NADH比值来影响延年益寿[20]。

 NADH没有但没有延寿,还减寿!NADH适量的三大危险,你分解吗?

图注: NAD /NADH ——“天平两端”

综上所述,目前的争论认为,外源性补充NADH可能会选拔细胞内的NADH水平,提高NAD水平,对缩短寿命没有好处。 即使和NMN、NR这样的NAD补充剂“短命药”一起服用,最终也是花了双重钱却“吃得很热闹”。

把NADH包装成“短命药”的商人,本来应该吃更多自制的——“拯救智慧、补充大脑”。

NADH真正的跑道:也许是神经的“灵丹妙药”,但不是“聪明药”

NADH真正“跑路”的,是发明一种限制NADH间接催化的多巴胺降解速率的方法,使其恢复当量,加快内源性左旋多巴(多巴胺前体物质)的降解[21],也就是说,NADH NADH受线粒体能量代谢调节、钙稳态调节、脑基因表达调节、抗凋亡等多种影响,有望成为克服神经系统疾病调节该峰的“种子选手”。

20世纪90年代以来,关于NADH对各类神经系统疾病调节无效的争论,临床时间如雨后春笋般呈——,帕金森病(23,24 )、阿尔茨海默病(AD,“晚期痴呆”)、“时差病”(25 )。 276528 )的改善,也有望用于调节舞蹈病(HD )、脑外伤后/脑梗死后脑损伤、多发性软化症(MS )、脑肿瘤等“绝症”[28-36]。

多巴胺与练习和记忆密切相关[ 37,38 ]。 这一天,NADH在保健品领域做了一个“考生需要‘聪明药’”的职位,很多人服用后试图分散精神力量,达到择机锻炼的效果。

图注:某宝NADH“聪明药”广告

但目前的讨论仅表明,服用NADH能基本改善病理状态(AD、CFS及时差反应)患者的认知功能,公众对其无效性和安全性仍缺乏争议。 所以,我凯丽环球们不主张一般人“拿到一半就跑”。 把NADH作为有进步记忆和练习才能的保健品服用。

岁月派评论

人体自身神秘的研究历史,和解构森罗万象的迷信论争历史,都一律——,就像拼图游戏,试图以碎片来还原全景,在这段历史中难免会出现一两块错,需要不断删节我们现在看到的是现有谜题的样子,也许只是产品冰山的一角。

>

因而,咱们只可告知你美商凯丽,正在贯串现有争论证明分解之后,咱们以为:NADH有潜力成为一款调节许多神经系统疾病的好药,但不常利于延寿,没有提议未患作用认知功能的疾病的一般人把NADH看成补剂去服用。指望NADH早日“青春归位”,没有会再被用来骗人,回到属于自身的范畴去发光发热!

每次与NAD+代谢流上的相干物质战斗,笔者总能闻到一股难以名状的“怪味儿”:NAD+好处相干者把NADH贬得一钱没有值,NADH把NAD+妖化成洪水猛兽,NAD+各种弥补剂明争冷战……

我想,担任任的科普应该是枚举真相而臧否两论。咱们没有拦阻靠科普来变现,因而咱们也开起了自身的小店;不过以捞钱为想法而扭曲真相去科普,说瞎话,真的有点臭。

参照文献:

[1] Mitchell P: Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 1979; 206:1148.

[2] Veech, R.L. et al. (1972) The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387–397.

[3] Williamson, D.H. et al. (1967) The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527.

[美商凯丽4] Ying,W.(2008)NAD+/NADH and NADP+/NADPH incellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179–206.

[5] Cheng, Z. et al. (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21, 589–598.

[6] Houtkooper,R.H.etal.(2010)The secret life of NAD+:an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223.

[7] Kirsch M and De Groot H. NAD(P)H, a directly operating antioxidant? F ASEB J 15: 1569–1574, 2001.

[8] McGuinness ET and Butler JR. NAD+ kinase—-a review. Int J Biochem 17: 1–11, 1985.

[9] Olek RA, Ziolkowski W, Kaczor JJ, Greci L, Popinigis J, and Antosiewicz J. Antioxidant activity of NADH and its analogue—an in vitro study. J Biochem Mol Biol 37: 416–421, 2004.

[10] Jaeschke H, Kleinwaechter C, and Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 81: 57–68, 1992.

[11] Zhang Z, Blake DR, Stevens CR, Kanczler JM, Winyard PG, Symons MC, Benboubetra M, and Harrison R. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: the role of NADH as an electron donor. Free Radic Res 28: 151–164, 1998.

[12] Kaplin AI, Snyder SH, and Linden DJ. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphos凯丽环球phate receptors mediates hypoxic mobilization of calcium. J Neurosci 16: 2002–2011, 1996.

[13] Zima AV, Copello JA, and Blatter LA. Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH. FEBS Lett 547: 32–36, 2003.

[14] Zhang Q, Piston DW, and Goodman RH. Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897, 2002.

[15] Rutter J, Reick M, Wu LC, and McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cof凯丽钻石团队actors. Science 293: 510–514, 2001.

[16] Nadlinger K, Birkmayer J, Gebauer F, and Kunze R. Influence of reduced nicotinamide adenine dinucleotide on the production of interleukin-6 by peripheral human blood leukocytes. Neuroim-munomodulation 9: 203–208, 2001.

[17] Zhu K, Swanson RA, and Ying W. NADH can enter into astrocytes and block poly (ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport 16: 1209–1212, 2005.

[18] Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K., Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences, 112(9), 2876–2881.

[19] Castro-Marrero, J., Cordero, M. D., Segundo, M. J., Sáez-Francàs, N., Calvo, N., Román-Malo, L., … Alegre, J. (2015). Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants Redox Signaling, 22(8), 679–685.

[20] Lin, S. J., E. Ford, M. Haigis, G. Liszt L. Guarente: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18, 12-6(2004).

[21] Swerdlow, R. H.: Is NADH effective in the treatment of Parkinson's disease? Drugs Aging, 13, 263-8(1998).

[22] Demarin V, Podobnik SS, Storga Tomic D, and Kay G. Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30: 27–33, 2004.

[23] Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, and Przuntek H. Parenteral application of NADH in Parkinson’s disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 103: 1187–1193, 1996.

[24] Birkmayer, J. G., C. Vrecko, D. Volc W. Birkmayer: Nicotinamide adenine dinucleotide (NADH)——a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl, 146, 32-5(1993).

[25] NASA: Stabilized NADH as a Countermeasure for Jet Lag. Report/Patent Number JSC-CN-6528.

[26] Forsyth, L. M., Preuss, H. G., MacDowell, A. L., Chiazze, L., Birkmayer, G. D., Bellanti, J. A. (1999). Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Annals of Allergy, Asthma Immunology, 82(2), 185–191.

[27] Alegre, J., Rosés, J. M., Javierre, C., Ruiz-Baqués, A., Segundo, M. J., Fernández de Sevilla, T. (2010). Nicotinamida adenina dinucleótido (NADH) en pacientes con síndrome de fatiga crónica. Revista Clínica Espaola, 210(6), 284–288.

[28] Vis, J. C., E. Schipper, R. T. de Boer-van Huizen, M. M. Verbeek, R. M. de Waal, P. Wesseling, H. J. ten Donkelaar B. Kremer: Expression pattern of apoptosis-related markers in Huntington's disease. Acta Neuropathol (Berl), 109, 321-8(2005).

[29] Virag, L. C. Szabo: The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev, 54, 375-429(2002).

[30] Satchell, M. A., X. Zhang, P. M. Kochanek, C. E. Dixon, L. W. Jenkins, J. Melick, C. Szabo R. S. Clark: A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma. J Neurochem, 85, 697-708(2003).

[31] LaPlaca, M. C., J. Zhang, R. Raghupathi, J. H. Li, F. Smith, F. M. Bareyre, S. H. Snyder, D. I. Graham T. K. McIntosh: Pharmacologic inhibition of poly (ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma, 18, 369-76(2001).

[32] Kofler, J., T. Otsuka, Z. Zhang, R. Noppens, M. R. Grafe, D. W. Koh, V. L. Dawson, J. M. de Murcia, P. D. Hurn R. J. Traystman: Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab, 26, 135-41(2006).

[33] Gilgun-Sherki, Y., E. Melamed D. Offen: The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol, 251, 261-8(2004).

[34] Kauppinen, T. M., S. W. Suh, C. P. Genain R. A. Swanson: Poly (ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res, 81, 190-8(2005).

[35] Tentori, L., I. Portarena, F. Torino, M. Scerrati, P. Navarra G. Graziani: Poly (ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia, 40, 44-54(2002).

[36] Tentori, L., C. Leonetti, M. Scarsella, G. D'Amati, M. Vergati, I. Portarena, W. Xu, V. Kalish, G. Zupi, J. Zhang G. Graziani: Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res, 9, 5370-9(2003).

[37] Liang, L., Wang, R., Zhang, Z. (2012). The Effect of Dopamine on Working Memory. Neural Processing Letters, 35(3), 257–263.

[38] Roffman, J. L., Tanner, A. S., Eryilmaz, H., Rodriguez-Thompson, A., Silverstein, N. J., Ho, N. F., … Catana, C. (2016). Dopamine D1 signaling organizes network dynamics underlying working memory. Science Advances, 2(6), e1501672–e1501672.

  • 随机文章
  • 热门文章
  • 热评文章

本文地址:http://calerie.ziyouea.com/p/6347.html
版权声明:本文为原创文章,版权归 凯丽 所有,欢迎分享本文,转载请保留出处!

评论已关闭!